Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 945
Filter
1.
Nature ; 629(8011): 426-434, 2024 May.
Article in English | MEDLINE | ID: mdl-38658764

ABSTRACT

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Subject(s)
CD8-Positive T-Lymphocytes , Dinoprostone , Interleukin Receptor Common gamma Subunit , Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Mitochondria , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype , Signal Transduction , Humans , Dinoprostone/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Signal Transduction/drug effects , Interleukin-2/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , Interleukin-2 Receptor beta Subunit/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Proliferation/drug effects , Animals , Mice , Down-Regulation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
2.
Oncoimmunology ; 13(1): 2345859, 2024.
Article in English | MEDLINE | ID: mdl-38686178

ABSTRACT

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRß) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRß repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRß repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRß clonotypes was observed in responding tumours. Machine learning identified TCRß CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRß signatures associated with ICT response.


Subject(s)
Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Receptors, Antigen, T-Cell, alpha-beta , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Humans , Mice, Inbred C57BL , Female
3.
J Nanobiotechnology ; 22(1): 206, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658950

ABSTRACT

The insufficient abundance and weak activity of tumour-infiltrating lymphocytes (TILs) are two important reasons for the poor efficacy of PD-1 inhibitors in hepatocellular carcinoma (HCC) treatment. The combined administration of tanshinone IIA (TSA) and astragaloside IV (As) can up-regulate the abundance and activity of TILs by normalising tumour blood vessels and reducing the levels of immunosuppressive factors respectively. For enhancing the efficacy of PD-1 antibody, a magnetic metal-organic framework (MOF) with a homologous tumour cell membrane (Hm) coating (Hm@TSA/As-MOF) is established to co-deliver TSA&As into the HCC microenvironment. Hm@TSA/As-MOF is a spherical nanoparticle and has a high total drug-loading capacity of 16.13 wt%. The Hm coating and magnetic responsiveness of Hm@TSA/As-MOF provide a homologous-magnetic dual-targeting, which enable Hm@TSA/As-MOF to counteract the interference posed by ascites tumour cells and enhance the precision of targeting solid tumours. Hm coating also enable Hm@TSA/As-MOF to evade immune clearance by macrophages. The release of TSA&As from Hm@TSA/As-MOF can be accelerated by HCC microenvironment, thereby up-regulating the abundance and activity of TILs to synergistic PD-1 antibody against HCC. This study presents a nanoplatform to improve the efficacy of PD-1 inhibitors in HCC, providing a novel approach for anti-tumour immunotherapy in clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metal-Organic Frameworks , Programmed Cell Death 1 Receptor , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Animals , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/drug effects , Mice, Inbred BALB C , Saponins/pharmacology , Saponins/chemistry , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology
4.
Mol Diagn Ther ; 28(3): 339-344, 2024 May.
Article in English | MEDLINE | ID: mdl-38625642

ABSTRACT

Lifileucel (AMTAGVI™), a one-time autologous T cell therapy derived and expanded from tumour-infiltrating lymphocytes (TIL) from a patient's own tumour, is being developed by Iovance Biotherapeutics, Inc. for the treatment of cancer. Lifileucel was granted accelerated approval based on objective response rate (ORR) in February 2024 in the USA for use in adult patients with unresectable or metastatic melanoma previously treated with a PD-1 blocking antibody, and if BRAF V600 mutation positive, a BRAF inhibitor with or without a MEK inhibitor. This article summarizes the milestones in the development of lifileucel leading to this first approval for the treatment of patients with unresectable or metastatic melanoma who have progressed on or after prior anti-PD-1/L1 therapy and targeted therapy.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Melanoma/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Drug Approval , Immunotherapy, Adoptive , Treatment Outcome
5.
Int Immunopharmacol ; 132: 111943, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581989

ABSTRACT

BACKGROUND: Staphylococcal enterotoxin C2 (SEC2) is used as an immunotherapeutic drug in China. However, SEC2 are limited due to its immunosuppressive and toxic effects. A SEC2 2M-118 (H118A/T20L/G22E) mutant generated by site-directed mutagenesis was studied to elucidate the underlying antitumor mechanism. METHODS: The effects of 2M-118 on mouse fibrosarcoma (Meth-A) cells and cytokine responses were tested in vitro using a transwell assay and ELISA, respectively. 2M-118 effect on immune function in tumor-bearing mice was tested. Cytokine levels and antitumor responses were measured using ELISA and flow cytometry, respectively. TUNEL staining and immunohistochemistry were employed to detect the tumor apoptosis and CD4+ and CD8+ tumor infiltrating lymphocytes (TILs) in tumor tissue. RESULTS: 2M-118 demonstrated the growth inhibition on tumor cells, increase of cytokines production (IL-2, IFN-γ, and TNF-α) and splenocyte proliferation in vitro. 2M-118 effectively inhibited tumor development and increased lymphocytes and cytokines in a tumor-bearing mouse model. Additionally, 2M-118 regulated the tumormicroenvironment by reducing the number of myeloid-derived suppressor cells (MDSCs), increasing the number of TILs, and inducing tumorcell apoptosis. CONCLUSION: 2M-118 promotes immune function and enhances antitumor response. This indicates that 2M-118 could potentially be developed as a novel anti-tumor drug with-highefficiencyandlowtoxicity.


Subject(s)
Cytokines , Enterotoxins , Animals , Enterotoxins/immunology , Cell Line, Tumor , Mice , Cytokines/metabolism , Mice, Inbred BALB C , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Fibrosarcoma/drug therapy , Fibrosarcoma/immunology , Fibrosarcoma/pathology , Apoptosis/drug effects , Immunity, Cellular/drug effects , Female , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Mutation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects
6.
Clin Cancer Res ; 30(10): 2097-2110, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38457288

ABSTRACT

PURPOSE: Clinical implications of neoadjuvant immunotherapy in patients with locally advanced but resectable head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. PATIENTS AND METHODS: Patients with resectable HNSCC were randomized to receive a single dose of preoperative durvalumab (D) with or without tremelimumab (T) before resection, followed by postoperative (chemo)radiotherapy based on multidisciplinary discretion and 1-year D treatment. Artificial intelligence (AI)-powered spatial distribution analysis of tumor-infiltrating lymphocytes and high-dimensional profiling of circulating immune cells tracked dynamic intratumoral and systemic immune responses. RESULTS: Of the 48 patients enrolled (D, 24 patients; D+T, 24 patients), 45 underwent surgical resection per protocol (D, 21 patients; D+T, 24 patients). D±T had a favorable safety profile and did not delay surgery. Distant recurrence-free survival (DRFS) was significantly better in patients treated with D+T than in those treated with D monotherapy. AI-powered whole-slide image analysis demonstrated that D+T significantly reshaped the tumor microenvironment toward immune-inflamed phenotypes, in contrast with the D monotherapy or cytotoxic chemotherapy. High-dimensional profiling of circulating immune cells revealed a significant expansion of T-cell subsets characterized by proliferation and activation in response to D+T therapy, which was rare following D monotherapy. Importantly, expansion of specific clusters in CD8+ T cells and non-regulatory CD4+ T cells with activation and exhaustion programs was associated with prolonged DRFS in patients treated with D+T. CONCLUSIONS: Preoperative D±T is feasible and may benefit patients with resectable HNSCC. Distinct changes in the tumor microenvironment and circulating immune cells were induced by each treatment regimen, warranting further investigation.


Subject(s)
Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Head and Neck Neoplasms , Neoadjuvant Therapy , Squamous Cell Carcinoma of Head and Neck , Humans , Male , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Middle Aged , Female , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoadjuvant Therapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Adult , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
7.
Am J Clin Dermatol ; 25(3): 407-419, 2024 May.
Article in English | MEDLINE | ID: mdl-38329690

ABSTRACT

There have been many recent advances in melanoma therapy. While 50% of melanomas have a BRAF mutation and are a target for BRAF inhibitors, the remaining 50% are BRAF wild-type. Immune checkpoint inhibitors targeting PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and lymphocyte activated gene-3 (Lag-3) are all approved for the treatment of patients with advanced BRAF wild-type melanoma; however, treatment of this patient population following initial immune checkpoint blockade is a current therapeutic challenge given the lack of other efficacious options. Here, we briefly review available US FDA-approved therapies for BRAF wild-type melanoma and focus on developing treatment avenues for this heterogeneous group of patients. We review the basics of genomic features of both BRAF mutant and BRAF wild-type melanoma as well as efforts underway to develop new targeted therapies involving the mitogen-activated protein kinase (MAPK) pathway for patients with BRAF wild-type tumors. We then focus on novel immunotherapies, including developing checkpoint inhibitors and agonists, cytokine therapies, oncolytic viruses and tumor-infiltrating lymphocytes, all of which represent potential therapeutic avenues for patients with BRAF wild-type melanoma who progress on currently approved immune checkpoint inhibitors.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Mutation , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Humans , Melanoma/therapy , Melanoma/genetics , Melanoma/drug therapy , Melanoma/immunology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/therapy , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Molecular Targeted Therapy/methods , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Oncolytic Virotherapy/methods
8.
Mol Cancer Ther ; 23(5): 672-682, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38315993

ABSTRACT

Head and neck cancer (HNC) is prevalent worldwide, and treatment options are limited. Momordicine-I (M-I), a natural component from bitter melon, shows antitumor activity against these cancers, but its mechanism of action, especially in the tumor microenvironment (TME), remains unclear. In this study, we establish that M-I reduces HNC tumor growth in two different immunocompetent mouse models using MOC2 and SCC VII cells. We demonstrate that the anticancer activity results from modulating several molecules in the monocyte/macrophage clusters in CD45+ populations in MOC2 tumors by single-cell RNA sequencing. Tumor-associated macrophages (TAM) often pose a barrier to antitumor effects, but following M-I treatment, we observe a significant reduction in the expression of Sfln4, a myeloid cell differentiation factor, and Cxcl3, a neutrophil chemoattractant, in the monocyte/macrophage populations. We further find that the macrophages must be in close contact with the tumor cells to inhibit Sfln4 and Cxcl3, suggesting that these TAMs are impacted by M-I treatment. Coculturing macrophages with tumor cells shows inhibition of Agr1 expression following M-I treatment, which is indicative of switching from M2 to M1 phenotype. Furthermore, the total B-cell population in M-I-treated tumors is significantly lower, whereas spleen cells also show similar results when cocultured with MOC2 cells. M-I treatment also inhibits PD1, PD-L1, and FoxP3 expression in tumors. Collectively, these results uncover the potential mechanism of M-I by modulating immune cells, and this new insight can help to develop M-I as a promising candidate to treat HNCs, either alone or as adjuvant therapy.


Subject(s)
B-Lymphocytes , Head and Neck Neoplasms , Animals , Mice , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/immunology , Humans , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor Microenvironment/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , Cell Proliferation/drug effects
9.
Nature ; 625(7993): 166-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057662

ABSTRACT

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Subject(s)
Bone Marrow , Carcinogenesis , Interleukin-4 , Myelopoiesis , Signal Transduction , Animals , Humans , Mice , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Bone Marrow/drug effects , Bone Marrow/metabolism , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-4/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Monocytes/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Recurrence , Signal Transduction/drug effects
10.
Theranostics ; 12(10): 4564-4580, 2022.
Article in English | MEDLINE | ID: mdl-35832090

ABSTRACT

Background: Since T cell exclusion contributes to tumor immune evasion and immunotherapy resistance, how to improve T cell infiltration into solid tumors becomes an urgent challenge. Methods: We employed deep learning to profile the tumor immune microenvironment (TIME) in triple negative breast cancer (TNBC) samples from TCGA datasets and noticed that fibroblast growth factor receptor (FGFR) signaling pathways were enriched in the immune-excluded phenotype of TNBC. Erdafitinib, a selective FGFR inhibitor, was then used to investigate the effect of FGFR blockade on TIME landscape of TNBC syngeneic mouse models by flow cytometry, mass cytometry (CyTOF) and RNA sequencing. Cell Counting Kit-8 (CCK-8) assay and transwell migration assay were carried out to detect the effect of FGFR blockade on cell proliferation and migration, respectively. Cytokine array, western blot, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) were employed to investigate the potential mechanism by which FGFR inhibition enhanced T cell infiltration. Results: Blocking FGFR pathway by Erdafitinib markedly suppressed tumor growth with increased T cell infiltration in immunocompetent mouse models of TNBC. Mechanistically, FGFR blockade inhibited cancer-associated fibroblasts (CAFs) proliferation, migration and secretion of vascular cell adhesion molecule 1 (VCAM-1) by down-regulating MAPK/ERK pathway in CAFs, thus promoting T cell infiltration by breaking physical and chemical barriers built by CAFs in TIME. Furthermore, we observed that FGFR inhibition combined with immune checkpoint blockade therapy (ICT) greatly improved the therapeutic response of TNBC tumor models. Conclusions: FGFR blockade enhanced ICT response by turning immune "cold" tumor into "hot" tumor, providing remarkable implications of FGFR inhibitors as adjuvant agents for combinatorial immunotherapy.


Subject(s)
Cancer-Associated Fibroblasts , Receptors, Fibroblast Growth Factor , T-Lymphocytes , Triple Negative Breast Neoplasms , Animals , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/immunology , Cell Line, Tumor , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinoxalines/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
11.
Cell Rep ; 38(5): 110331, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108529

ABSTRACT

PD-1 blockade exerts clinical efficacy against various types of cancer by reinvigorating T cells that directly attack tumor cells (tumor-specific T cells) in the tumor microenvironment (TME), and tumor-infiltrating lymphocytes (TILs) also comprise nonspecific bystander T cells. Here, using single-cell sequencing, we show that TILs include skewed T cell clonotypes, which are characterized by exhaustion (Tex) or nonexhaustion signatures (Tnon-ex). Among skewed clonotypes, those in the Tex, but not those in the Tnon-ex, cluster respond to autologous tumor cell lines. After PD-1 blockade, non-preexisting tumor-specific clonotypes in the Tex cluster appear in the TME. Tumor-draining lymph nodes (TDLNs) without metastasis harbor a considerable number of such clonotypes, whereas these clonotypes are rarely detected in peripheral blood. We propose that tumor-infiltrating skewed T cell clonotypes with an exhausted phenotype directly attack tumor cells and that PD-1 blockade can promote infiltration of such Tex clonotypes, mainly from TDLNs.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor/drug effects , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment/drug effects
12.
Oxid Med Cell Longev ; 2022: 5479491, 2022.
Article in English | MEDLINE | ID: mdl-35154567

ABSTRACT

BACKGROUND: Radioimmunotherapy has become one of the most promising strategies for cancer treatment. Preclinical and clinical studies have demonstrated that antiangiogenic therapy can improve the efficacy of immunotherapy and sensitize radiotherapy through a variety of mechanisms. However, it is undefined whether angiogenesis inhibitors can enhance the effect of radioimmunotherapy. In this study, we aim to explore the role of anlotinib (AL3818) on the combination of radiotherapy and immune checkpoint inhibitors in Lewis lung carcinoma mouse. METHODS: C57BL/6 mouse subcutaneous tumor model was used to evaluate the ability of different treatment regimens in tumor growth control. Immune response and immunophenotyping including the quantification and activation were determined by flow cytometry, multiplex immunofluorescence, and multiplex immunoassay. RESULTS: Triple therapy (radiotherapy combined with anti-PD-L1 and anlotinib) increased tumor-infiltrating lymphocytes and reversed the immunosuppressive effect of radiation on the tumor microenvironment in mouse model. Compared with radioimmunotherapy, the addition of anlotinib also boosted the infiltration of CD8+ T cells and M1 cells and caused a decrease in the number of MDSCs and M2 cells in mice. The levels of IFN-gamma and IL-18 were the highest in the triple therapy group, while the levels of IL-23, IL-13, IL-1 beta, IL-2, IL-6, IL-10, and Arg-1 were significantly reduced. NF-κB, MAPK, and AKT pathways were downregulated in triple therapy compared with radioimmunotherapy. Thus, the tumor immune microenvironment was significantly improved. As a consequence, triple therapy displayed greater benefit in antitumor efficacy. CONCLUSION: Our findings indicate that anlotinib might be a potential synergistic treatment for radioimmunotherapy to achieve better antitumor efficacy in NSCLC patients by potentiating the tumor immune microenvironment.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/radiotherapy , Immune Checkpoint Inhibitors/administration & dosage , Indoles/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Quinolines/administration & dosage , Radioimmunotherapy/methods , Tumor Microenvironment/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/radiation effects , Carcinoma, Lewis Lung/immunology , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Female , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/radiation effects , Mice , Mice, Inbred C57BL , Radiotherapy Dosage , Signal Transduction/drug effects , Signal Transduction/immunology , Signal Transduction/radiation effects , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects
13.
Nat Commun ; 13(1): 934, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177627

ABSTRACT

The increasing use of mass cytometry for analyzing clinical samples offers the possibility to perform comparative analyses across public datasets. However, challenges in batch normalization and data integration limit the comparison of datasets not intended to be analyzed together. Here, we present a data integration strategy, CytofIn, using generalized anchors to integrate mass cytometry datasets from the public domain. We show that low-variance controls, such as healthy samples and stable channels, are inherently homogeneous, robust against stimulation, and can serve as generalized anchors for batch correction. Single-cell quantification comparing mass cytometry data from 989 leukemia files pre- and post normalization with CytofIn demonstrates effective batch correction while recapitulating the gold-standard bead normalization. CytofIn integration of public cancer datasets enabled the comparison of immune features across histologies and treatments. We demonstrate the ability to integrate public datasets without necessitating identical control samples or bead standards for fast and robust analysis using CytofIn.


Subject(s)
Algorithms , Datasets as Topic , Flow Cytometry/methods , Melanoma/drug therapy , Computational Biology/methods , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/pathology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Single-Cell Analysis , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/pathology
14.
Theranostics ; 12(1): 167-185, 2022.
Article in English | MEDLINE | ID: mdl-34987640

ABSTRACT

Rationale: Despite evidence suggesting that the tumor microenvironment (TME) in malignant pleural mesothelioma (MPM) is linked with poor prognosis, there is a lack of studies that functionally characterize stromal cells and tumor-infiltrating lymphocytes (TILs). Here, we aim to characterize the stromal subsets within MPM, investigate their relationship to TILs, and explore the potential therapeutic targets. Methods: We curated a core set of genes defining stromal/immune signatures expressed by mesenchymal cells within the TME using molecular analysis of The Cancer Genome Atlas (TCGA) MPM cohort. Stromal and immune profiles were molecularly characterized using flow cytometry, immunohistochemistry, microarray, and functionally evaluated using T cell-activation/expansion, coculture assays and drug compounds treatment, based on samples from an independent MPM cohort. Results: We found that a high extracellular matrix (ECM)/stromal gene signature, a high ECM score, or the ratio of ECM to an immune activation gene signature are significantly associated with poor survival in the MPM cohort in TCGA. Analysis of an independent MPM cohort (n = 12) revealed that CD8+ and CD4+ TILs were characterized by PD1 overexpression and concomitant downregulation in degranulation and CD127. This coincided with an increase in CD90+ cells that overexpressed PD-L1 and were enriched for ECM/stromal genes, activated PI3K-mTOR signaling and suppressed T cells. Protein array data demonstrated that MPM samples with high PD-L1 expression were most associated with activation of the mTOR pathway. Further, to reactivate functionally indolent TILs, we reprogrammed ex vivo TILs with Ibrutinib plus Rapamycin to block interleukin-2-inducible kinase (ITK) and mTOR pathways, respectively. The combination treatment shifted effector memory (TEM) CD8+ and CD4+ TILs towards T cells that re-expressed CD45RA (TEMRA) while concomitantly downregulating exhaustion markers. Gene expression analysis confirmed that Ibrutinib plus Rapamycin downregulated coinhibitory and T cell signature pathways while upregulating pathways involved in DNA damage and repair and immune cell adhesion and migration. Conclusions: Our results suggest that targeting the TME may represent a novel strategy to redirect the fate of endogenous TILs with the goal of restoring anti-tumor immunity and control of tumor growth in MPM.


Subject(s)
Adenine/analogs & derivatives , Lymphocytes, Tumor-Infiltrating/drug effects , Mesothelioma, Malignant/drug therapy , Piperidines/pharmacology , Sirolimus/pharmacology , Adenine/pharmacology , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Humans , Thy-1 Antigens , Tumor Microenvironment/immunology
15.
Cancer Sci ; 113(3): 838-851, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34927309

ABSTRACT

The challenge to improve the clinical efficacy and enlarge the population that benefits from immune checkpoint inhibitors (ICIs) for non-small-cell lung cancer (NSCLC) is significant. Based on whole-exosome sequencing analysis of biopsies from NSCLC patients before anti-programmed cell death protein-2 (PD-1) treatment, we identified NLRP4 mutations in the responders with a longer progression-free survival (PFS). Knockdown of NLRP4 in mouse Lewis lung cancer cell line enhanced interferon (IFN)-α/ß production through the cGAS-STING-IRF3/IRF7 axis and promoted the accumulation of intratumoral CD8+ T cells, leading to tumor growth retardation in vivo and a synergistic effect with anti-PD-ligand 1 therapy. This was consistent with clinical observations that more tumor-infiltrating CD8+ T cells and elevated peripheral IFN-α before receiving nivolumab treatment were associated with a longer PFS in NSCLC patients. Our study highlights the roles of tumor-intrinsic NLRP4 in remodeling the immune contextures in the tumor microenvironment, making regional type I IFN beneficial for ICI treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Interferon Type I/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Animals , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Line, Tumor , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Macrophages/drug effects , Male , Mice , Middle Aged , Mutation , Progression-Free Survival , Signal Transduction/drug effects , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
16.
J Pathol ; 256(2): 223-234, 2022 02.
Article in English | MEDLINE | ID: mdl-34731491

ABSTRACT

Radiation and bacillus Calmette-Guérin (BCG) instillations are used clinically for treatment of urothelial carcinoma, but the precise mechanisms by which they activate an immune response remain elusive. The role of the cGAS-STING pathway has been implicated in both BCG and radiation-induced immune response; however, comparison of STING pathway molecules and the immune landscape following treatment in urothelial carcinoma has not been performed. We therefore comprehensively analyzed the local immune response in the bladder tumor microenvironment following radiotherapy and BCG instillations in a well-established spontaneous murine model of urothelial carcinoma to provide insight into activation of STING-mediated immune response. Mice were exposed to the oral carcinogen, BBN, for 12 weeks prior to treatment with a single 15 Gy dose of radiation or three intravesical instillations of BCG (1 × 108 CFU). At sacrifice, tumors were staged by a urologic pathologist and effects of therapy on the immune microenvironment were measured using the NanoString Myeloid Innate Immunity Panel and immunohistochemistry. Clinical relevance was established by measuring immune biomarker expression of cGAS and STING on a human tissue microarray consisting of BCG-treated non-muscle-invasive urothelial carcinomas. BCG instillations in the murine model elevated STING and downstream STING-induced interferon and pro-inflammatory molecules, intratumoral M1 macrophage and T-cell accumulation, and complete tumor eradication. In contrast, radiotherapy caused no changes in STING pathway or innate immune gene expression; rather, it induced M2 macrophage accumulation and elevated FoxP3 expression characteristic of immunosuppression. In human non-muscle-invasive bladder cancer, STING protein expression was elevated at baseline in patients who responded to BCG therapy and increased further after BCG therapy. Overall, these results show that STING pathway activation plays a key role in effective BCG-induced immune response and strongly indicate that the effects of BCG on the bladder cancer immune microenvironment are more beneficial than those induced by radiation. © 2021 The Pathological Society of Great Britain and Ireland.


Subject(s)
Antineoplastic Agents/administration & dosage , BCG Vaccine/administration & dosage , Immunity, Innate/drug effects , Immunity, Innate/radiation effects , Immunotherapy , Membrane Proteins/immunology , Radiation Dosage , Urinary Bladder Neoplasms/therapy , Urothelium/drug effects , Urothelium/radiation effects , Administration, Intravesical , Animals , Female , Humans , Inflammation Mediators/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/radiation effects , Membrane Proteins/metabolism , Mice, Inbred C57BL , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/radiation effects , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/radiation effects , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urothelium/immunology , Urothelium/metabolism
17.
Front Immunol ; 12: 775761, 2021.
Article in English | MEDLINE | ID: mdl-34925348

ABSTRACT

Anti-PD-(L)1 therapies yield a disappointing response rate of 15% across soft-tissue sarcomas, even if some subtypes benefit more than others. The proportions of TAMs and TILs in their tumor microenvironment are variable, and this heterogeneity correlates to histotype. Tumors with a richer CD8+ T cell, M1 macrophage, and CD20+ cells infiltrate have a better prognosis than those infiltrated by M0/M2 macrophages and a high immune checkpoint protein expression. PD-L1 and CD8+ infiltrate seem correlated to response to immune checkpoint inhibitors (ICI), but tertiary lymphoid structures have the best predictive value and have been validated prospectively. Trials for combination therapies are ongoing and focus on the association of ICI with chemotherapy, achieving encouraging results especially with pembrolizumab and doxorubicin at an early stage, or ICI with antiangiogenics. A synergy with oncolytic viruses is seen and intratumoral talimogene laherpavec yields an impressive 35% ORR when associated to pembrolizumab. Adoptive cellular therapies are also of great interest in tumors with a high expression of cancer-testis antigens (CTA), such as synovial sarcomas or myxoid round cell liposarcomas with an ORR ranging from 20 to 50%. It seems crucial to adapt the design of clinical trials to histology. Leiomyosarcomas are characterized by complex genomics but are poorly infiltrated by immune cells and do not benefit from ICI. They should be tested with PIK3CA/AKT inhibition, IDO blockade, or treatments aiming at increasing antigenicity (radiotherapy, PARP inhibitors). DDLPS are more infiltrated and have higher PD-L1 expression, but responses to ICI remain variable across clinical studies. Combinations with MDM2 antagonists or CDK4/6 inhibitors may improve responses for DDLPS. UPS harbor the highest copy number alterations (CNA) and mutation rates, with a rich immune infiltrate containing TLS. They have a promising 15-40% ORR to ICI. Trials for ICB should focus on immune-high UPS. Association of ICI with FGFR inhibitors warrants further exploration in the immune-low group of UPS. Finally translocation-related sarcomas are heterogeneous, and although synovial sarcomas a poorly infiltrated and have a poor response rate to ICI, ASPS largely benefit from ICB monotherapy or its association with antiangiogenics agents. Targeting specific neoantigens through vaccine or adoptive cellular therapies is probably the most promising approach in synovial sarcomas.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Sarcoma/therapy , Animals , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Disease Management , Disease Susceptibility , Humans , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Immunotherapy/adverse effects , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Molecular Targeted Therapy/adverse effects , Molecular Targeted Therapy/methods , Prognosis , Sarcoma/diagnosis , Sarcoma/etiology , Sarcoma/mortality , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
19.
Front Immunol ; 12: 752348, 2021.
Article in English | MEDLINE | ID: mdl-34912335

ABSTRACT

Programmed cell death-1 (PD-1) blockade has a profound effect on the ability of the immune system to eliminate tumors, but many questions remain about the cell types involved and the underlying mechanisms of immune activation. To shed some light on this, the cellular and molecular events following inhibition of PD-1 signaling was investigated in the MC-38 colon carcinoma model using constitutive (PD-1 KO) and conditional (PD1cKO) mice and in wild-type mice treated with PD-1 antibody. The impact on both tumor growth and the development of tumor immunity was assessed. In the PD-1cKO mice, a complete deletion of Pdcd1 in tumor-infiltrating T cells (TILs) after tamoxifen treatment led to the inhibition of tumor growth of both small and large tumors. Extensive immune phenotypic analysis of the TILs by flow and mass cytometry identified 20-different T cell subsets of which specifically 5-CD8 positive ones expanded in all three models after PD-1 blockade. All five subsets expressed granzyme B and interferon gamma (IFNγ). Gene expression analysis of the tumor further supported the phenotypic analysis in both PD-1cKO- and PD-1 Ab-treated mice and showed an upregulation of pathways related to CD4 and CD8 T-cell activation, enhanced signaling through costimulatory molecules and IFNγ, and non-T-cell processes. Altogether, using PD-1cKO mice, we define the intrinsic nature of PD-1 suppression of CD8 T-cell responses in tumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocyte Subsets/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , Female , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/deficiency
20.
J Med Chem ; 64(24): 17920-17935, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34852203

ABSTRACT

Metastasis is a major contributor of death in cancer patients, and there is an urgent need for effective treatments of metastatic malignancies. Herein, ketoprofen (KP) and loxoprofen (LP) platinum(IV) complexes with antiproliferative and antimetastatic properties were designed and prepared by integrating chemotherapy and immunotherapy targeting cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and programmed death ligand 1 (PD-L1), besides DNA. A mono-KP platinum(IV) complex with a cisplatin core is screened out as a candidate possessing potent anti-proliferative and anti-metastasis activities both in vitro and in vivo. It induces serious DNA damage and further leads to high expression of γ-H2AX and p53. Moreover, it promotes apoptosis of tumor cells through mitochondrial apoptotic pathway Bcl-2/Bax/caspase3. Then, COX-2, MMP-9, NLRP3, and caspase1 as pivotal enzymes igniting inflammation and metastasis are obviously inhibited. Notably, it significantly improves immune response through restraining the expression of PD-L1 to increase CD3+ and CD8+ T infiltrating cells in tumor tissues.


Subject(s)
Coordination Complexes/pharmacology , DNA Damage , Inflammation/chemically induced , Ketoprofen/chemistry , Lymphocytes, Tumor-Infiltrating/drug effects , Neoplasm Metastasis/prevention & control , Phenylpropionates/chemistry , Platinum/chemistry , Animals , Cell Line, Tumor , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Lymphocytes, Tumor-Infiltrating/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...